Saturday, August 25, 2018

Nanotubes can change the shape of water

Insert water in Nanotube hole then The water molecules will align into a square rod, If the nanotube is just the right width. By using molecular models it can be demonstrated that weak van der Waals forces between the inner surface of the nanotube and the water molecules are strong enough to snap the oxygen and hydrogen atoms into place.


According to Molecular models of nanotube ice, water molecules takes the shape of a square tube because of the pressure of a carbon nanotube at left and a boron nitride nanotube  at right.The phenomenon is dependent upon the diameter of the nanotube. It is also known as two-dimensional “ice,” because the molecules freeze regardless of the temperature. To fabricate nanochannels and energy-storing nanocapacitors, The research provides valuable insight on ways to leverage atomic interactions between nanotubes and water molecules 


Boron nitride is best at constraining the shape of water when the nanotubes are 10.5 angstroms wide. The researchers built molecular models of carbon and boron nitride nanotubes with adjustable widths. The hydrogen atoms in tightly confined water take on interesting structural properties. Recent experiments on labs showed and prompted the researchers to build density functional theory models to analyze the forces responsible.

Researchers made 3 angstroms wide water molecules inside carbon and boron nitride nanotubes of various chiralities and the diameter is between 8 and 12 angstroms. They discovered that nanotubes in the middle diameters had the most impact on the balance between molecular interactions and van der Waals pressure that prompted the transition from a square water tube to ice.

If the water molecule is too large as compared to nanotube, the water keeps its amorphous shape. The nanotubes’ van der Waals force starts to push water molecules into organized square shapes.” But at about 8 angstroms  Due to the particular polarization of atoms, the strongest interactions were found in boron nitride nanotubes. Nanotube ice can be used in molecular machines or foster ways to deliver a few molecules of water to targeted cells, like a nanoscale syringe.

Saturday, August 18, 2018

Treating Nail Fungus With Nanotechnology


Nail fungus known as Onychomycosis impacts millions of people worldwide causing nail disfigurement, pain, and increased risk of soft tissue infection. Treatments like topical antifungal treatments are available but treatment failure remains high due to a number of factors.

To improve its treatment, Scientists investigated the use of nanotechnology and make it more cost effective. It is noticed that when Efinaconazole is combined with the nitric oxide-releasing nanoparticles, it achieves the same antifungal effects but at a fraction of the amount of the medication alone needed to impart the same effect.

Nanotechnology is being employed to better deliver established imaging and therapeutic agents in medicine and surgery fields to ultimately improve patient outcomes "A quickly emerging roadblock in patient care is, unfortunately, access to medications due to rising cost and poor insurance coverage.”


Combination of Nanoparticle and medication are opening the door to potentially better and more tolerable treatment regimens. The additional benefit is the ability of nanoparticles to access infections in unreachable locations as penetration and retaining activity across the nail plate.

By combining them at a fraction of these concentrations we could impart the same antifungal activity at the highest concentrations tested of either alone. "The impact of this combo, highlighted their synergistic damaging effects at concentrations that would be completely safe to human cells, which we visualized using electron microscopy as compared to either product alone.

"With the results, to determine the efficacy of the treatment in a clinical setting, it is worth further researching the synergy of nitric oxide-releasing nanoparticles and Efinaconazole against onychomycosis.

Friday, August 10, 2018

              Ability of silicon chips to tackle Big data


To transmit information for future computing there is a major advantage in the ability to use light instead of electrical signals. The integration of electrical circuits with different optical components side-by-side on a single silicon chip using, for the first time, sub-100nm semiconductor technology is allowed by SILICON NANOPHOTONICS which is also known as the breakthrough technology.

Silicon Nanophotonics provides a super highway for large volumes of data to move at rapid speeds and it uses pulses of light for communication and “This allows us to move silicon nanophotonics technology into a real-world manufacturing environment that will have impact across a range of applications and alleviating the limitations of congested data traffic and high-cost traditional interconnects. Due to an explosion of new applications and services the amount of data being created and transmitted over enterprise networks continues to grow. Silicon Nanophotonics can enable the industry to keep pace with increasing demands

Silicon seamlessly connects various parts of large systems due to which nanophotonics technology can provide answers to Big Data challenges whether few centimeters or few kilometers apart from each other, and move terabytes of data via pulses of light through optical fibres. A new era of computing that requires systems to process and analyze, in real-time, huge volumes of information known as Big Data. A variety of silicon nanophotonics components such as wavelength division multiplexers (WDM), modulators, and detectors are integrated side-by-side with a CMOS electrical circuitry by adding a few processing modules into a high-performance 90nm CMOS fabrication line.IBM's CMOS nanophotonics innovation shows handsets to surpass the information rate of 25Gbps for every channel. What's more, the innovation is fit for bolstering various parallel optical information streams into a solitary fiber by using minimized on-chip wavelength-division multiplexing gadgets. The capacity to multiplex huge information streams at high information rates will permit future scaling of optical interchanges fit for conveying terabytes of information between far off parts of PC frameworks.

Friday, August 3, 2018


Nanocarbon and Its Bioactivity

Aim of this topic is the production, characterization, modification and biological properties investigation of carbon based nanostructured materials for biosensing applications and in particular for the development of a DNA detection device.The first stage  is aimed to produce worthwhile quantities of vertically well-oriented multi-walled carbon nanotubes on uncoated silicon substrates by a simple and economical chemical vapor deposition process.

The as-grown material will be characterized and then chemically modified Subsequently. The chemical modification is the reason of the tuning of the chemical properties of the CNTs and It allows a different response to different biomolecules. Several functionalization treatments will be attempted to tailor the CNT properties for the foreseen applications. the chemical insertion of nucleic acids, proteins and other biological molecules on CNTs consequently will make possible to produce nano-biological sensors which is allowed by the presence of reactive groups on the material surface. The ferromagnetic particles trapped inside the CNT hollow cavities, can enable the production of systems that can migrate below a magnetic field effect.


To make them biocompatible and useful as biosensors or as coatings for biomedical devices, The interaction of biomolecules with CNTs will be studied. The interaction mechanisms between CNT surface and blood are characterized by a complex series of events that are yet not clearly understood. The aim of this research activity is to investigate the relationship between surface properties (chemistry, hydrophobicity-hydrophilicity and topography) and biological responses such as the composition and structure of the adsorbed plasma protein layer and platelet adhesion/activation properties. In this work the behavior of CNTs compared to various forms of carbon (pyrolitic carbon, nanocrystalline graphite and amorphous carbon) will be investigated.Besides the study of conformation and orientation of adherent proteins, the adhesion extent of various DNA (oligonucleotides, genomic DNA) structures will be evaluated to gain fundamental knowledge useful for both the development of CNT based biosensors and the development of an innovative materials for genomic DNA isolation (see Latemar project on Lab-on-Chip).